The user-friendly version of this content is available here.

The following content is copyright (c) 2009-2013 by Goods of the Mind, LLC.

This essential trains for: SAT-II, AMC-12, AIME.

The summation symbol is a cosmetic shorthand for sums that have a large or unspecified number of terms. Instead of writing the sum in expanded form:

equation

we can write:

equation

Notice that j is an integer variable that was not there before. It is called the summation index and it is used to count the terms of the sum.

The lowest value of j is called the lower summation limit and the highest value of j is called the upper summation limit.

The summation symbol is like a machine that works like this:

The expression of the term can have various forms. It may or may not depend on the summation index.

In the first example above, the term is exactly equal to the summation index.

Example 1:

equation

The term is constant (does not depend on the summation index). The sum is simply:

equation

Example 2:

equation

Another sum with constant term:

equation

Example 3:

equation

In this sum, the term's value alternates between 1 and -1:

equation

If N is even the sum is equal to zero. If N is odd the sum is equal to -1.

Example 4:

equation

This is a geometric sum:

equation

Example 5:

Change the sum below to start counting the terms at 0 instead of 1:

equation

Notice that both limits as well as the expression of the term must be changed:

equation

Now change the same sum to start at 5:

equation

Properties of summation symbols:

Constants can be factored out:

equation

equation

Denoting the general term by:

equation

this property can be written as:

equation

Sums can be re-arranged:

equation

Using both properties we can solve the (arithmetic sequence) example:

equation

equation

equation